圆的面积教学反思
身为一名到岗不久的老师,我们要在教学中快速成长,借助教学反思我们可以拓展自己的教学方式,那么大家知道正规的教学反思怎么写吗?以下是小编整理的圆的面积教学反思,欢迎阅读,希望大家能够喜欢。
圆的面积教学反思1圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。
通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。
这几天一直对圆的进行研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。本节“圆的面积”的教学,力求使学生在获得知识的同时,创新意识、探究能力和实践能力都得到发展。
一、从圆的周长到圆的面积体验其中不同
本课开始,先与圆的周长与圆的面积比较不同,接着结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
二、学具演示,激发探究
通过上面计算平行四边形面积的方法,探究圆的面积,如何计算圆的面积,学生有点不知所措。现在回想起来,应该先我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,这样的引入可能能让学生解答出我的问题。通过学生观看一个个的图片,从8等份、16等份、32等份分圆再把圆片拼起来,从一个不规则图形,到近似是的一个长方形。再在这个长方形让学生中找到圆的周长,从4等份拼成的不规则图形到32图形拼成的近似一个长方形,从中得出规律。最后得到长方形的长就等于圆的周长的一半,而它的宽就是圆的半径,可能得到长方形的面积可能近似地看作圆的面积。最终推导出圆的面积公式。
反思,在这一节课中,我只是将圆面积推导过程,只是用学具的形式展现给同学们看,如果能让同学自己动手做一下,将一个圆平均分成32份,再自己拼一拼。这样学生对于圆的面积的知识认识会更加深刻。
在这一节课中,我总觉得缺乏学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。只是通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,在自己地引导中推导出圆的面积计算公式。学生思维在交流中虽有碰撞,在碰撞中发散,在想象中得以提升。但总觉得不够。在以后这一类的教学中,应该让思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到了提高。在细节的设计还要精心安排。
圆的面积教学反思2从教十多年来,一路上的酸甜苦辣,只有心里明白。提起数学,学生常会在艰苦的思索,繁难的演算,复杂的逻辑推理联系起来,认为数学学习是一种枯燥的、辛苦的劳动。通过对新课程标准和新教材的学习和实践,我体会到:学生的思维不是凭空产生的,而是对外界环境刺激的积极反应。
因此,教师应结合学生年龄与身心特征,创造性地使用教材,积极开发,利用各种教学资源,为学生提供丰富多彩的学习素材。
特别是高年级数学教学,应紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设各种情境,让学生动手操作,引导学生开展观察、操作、猜想、推理、交流等活动激发对数学的兴趣,树立学好数学的自信心。尽管六年级的学生在各方面都有自制力,但是,持久性注意的范围也有局限性,加上数学内容单一,常会感到枯燥乏味。如在教学《圆的面积》的时候,我先让学生课前准备一个圆,在教学的时候,让他们自己先想想圆的面积指什么部分,该怎么计算,然后,学生用自己手中的圆,动手摸,通过摸明白圆的面积。然后自学课本动手操作数学课本第127页小组合作完成,弄懂圆通过剪拼、发现近似长方形的长相当于圆周长的一半,宽相当于圆的半径这样,学生就很容易看出这个圆的面积(就是这个长方形的面积)。
计算公式:圆的面积等于圆周率乘圆半径的平方。为学生提供了积极思考和操作实践的数学活动情境,使学生真正明白了圆面积计算的公式以及算理,充分调动了学生学习的积极性和主动性,使课堂教学生动有趣,轻松愉快。
圆的面积教学反思3本课采用课件形式,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和老师的点拨解说、提问,让学生在自主探索中合作交流,使教学过程达到最优化。
一、让学生多种感官参与学习,形成正确的几何概念,掌握图形的特征及内在联系,激发学生的兴趣,使学生乐学。
如揭示圆的面积定义,基本建立了圆的面积概念。又如运用计算机显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律的科学美,并充分体现构图美和动态美的特点,它能刺激学生,强化学生的好奇心,提高学生探求知识奥秘的欲望,有助于解除学生视听疲劳,提高学习效率。计算机的辅助教学促进了学生良好思维品质的形成,达到了预想的教学目的。
二、把数学虚拟实验引入几何的教学中,以研究的方式学习圆的面积,突出学生在学习中的主体地位,有效培养学生的创新意识。
例如通过剪切、平移将平行四边形、三角形、梯形拼合成与它面积相等底等高的长方形、平行四边形时,课件提供的虚拟实验,使它们的面积公式推导过程完整展示在学生面前。学生不仅概括归纳出面积计算方法,感悟到转化的思想在几何学习中的妙用。而且学生在抽象、概括、归纳推理过程中接受严密的逻辑思维训练,形成一种学习几何知识的方法,产生一种自我尝试,主动探究,乐于发现的需要、动机和能力。从而顺利的想到圆的面积计算公式也可以这样推导。
教学中先动画展示等分圆的过程,再演示出拼合成长方形的过程,通过几组类似的实验,等分的份数递增,拼成的图形越来越接近于长方形,让学生通过操作实验和观察、比较得出这样的事实,拼成的长方形的面积和圆的面积相等,长方形的宽相当于圆的半径,长相等于圆周长的一半,圆面积的推导过程就完整的展示出来。对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题。 因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓。这一节课里我觉得学生学得很主动,由于大胆放手让学生运用以有的知识经验去解决新问题,学生感受到了成功的喜悦。同时我也觉得在新课改的理念下我们把学习的主阵地还给学生,学生的各方面能力得到了很大的提高。通过对圆有关知识学习,不仅加深学生对周围事物的理解,激 ……此处隐藏8775个字……p>
草地上有一群羊,突然来了一群狼(打一水果)
师:我发觉大家刚才猜谜语时第一个猜得最困难,第二个第三个猜时脱口而出,这是为什么呢?有了解决一种问题的难舍难分,就可以用这种经验解决类似的问题。数学学习中也常是这样的。
一、 导入:
师:请看屏幕,马总是被人们用一根缰绳拴在固定的地方,马就困惑了,它的活动范围有多大呢?它绕来绕去会在一个什么样的圈中?会形成什么样的形状?这个面有多大?面有多大,用数学上的语言或者词语描述就是指它的什么?这节课我们就来学习《圆的面积》。(板书课题)
二、 认识圆的面积:
1.师:老师这有一个圆,请看这个圆,什么是这个圆的面积呢?谁愿意上来比划比划?(出示教具)一学生上台比划。
师:圆表面的大小就叫做圆的面积。
2.师:老师还带来了一个圆,请你将这两个圆比较一下,你发现了什么?
生:一个圆面积大,一个圆面积小。
师:那你发现圆的面积大小会与什么有关呢?结合这两个圆来好好观察观察。
生:半径或者直径越长,圆的面积就越大。
师:看来大家都知道了圆的面积大小与半径或者直径有关,但圆的面积究竟怎么样来计算呢,下面我们就一起来探究下。
三、观察与尝试猜测:
1.(出示正方形与圆的课件)
师:我们先用一个简单的办法来猜想一下圆面积的公式。以圆的半径r为周长画一个正方形,再画这个的三个,你能计算出这个大正方形的面积是多少吗?在圆中再画一个小正方形,小正方形的面积又是多
少呢?
生:大正方形的面积是4r,小正方形的面积是2r。
2.师:圆与大正方形的面积相比,你发现了什么?再与小正方形相比,你又发现了什么?
生:圆的面积比大正方形的面积小,比小正方形的面积大。
师:那就是说圆的面积要比4r小,比2r大。那你猜一猜,圆的面积会是多少呢?
生:3r。
师:我们姑且先这样猜测圆的面积公式就是3r。大家究竟猜测的对与否,还需要验证。
四、 小组合作、拼摆。
1. 师:我们以前学习过平行四边形,你们还记得怎样计算平行四边形的面积吗?
生:底*高。S=ah。
师:还记得平行四边形的面积计算公式是如何推导出来的吗?
是这样的吗?我们来看一看。(演示)我们把平行四边形的左边割了一部分,补到平行四边形的右边,这样就把平行四边形转化成了长方形。那你们还能记得三角形的梯形的面积公式又是怎样推导出来的呢? 生:三角形和梯形转化成平行四边形再推导的。
师:这三种图形的面积公式都是先转化成以前学过的图形,再推导的。那我们能不能把圆转化成以前学过的图形来推导圆的面积计算公式呢? 222222
2. 师:下面我们就来做一个实验,咱们把圆平均分成若干份,大家请看,每一份都像什么?
生:三角形或者等腰三角形。
师:对,它近似于一个等腰三角形。好的,同学生,我们可不可以用这些近似的等腰三角形拼成一个以前学过的图形呢?请你们拿出老师给你们准备好的工具开始吧!
提出要求:各组一定要认真整齐地拼摆。小组同学快速地合作完成,完成后坐好举手示意。
学生开始小组合作。
3. 汇报合作结果。
师:你们都拼成了什么样的图形?上台来展示一下吧。
生分组上台展示。
要求学生汇报自己是怎样拼的,拼成了一个什么图形。
师:刚才我们把圆平均分成了16份、32份,那如果分得份数越多,你会发现什么?
生:分得越多,越接近长方形。
五、 面积计算公式推导:
1. 师:这个近似的长方形是由这个大小一样的圆拼成的。这个圆的半径是r,那么这个近似的长方形的长和宽又是多少呢?请同学们同桌互相商量商量,开始吧!
2.师:找到答案了吗?
生:长是πr,宽是r。
师:长方形的面积呢?请同学们在练习本上写一写。
那圆的面积呢?也写一写,读一读吧。
学生汇报。师板书。
3.师:这个公式与我们之前猜测的做一下比较,你发现了什么?
4.师:通过这个公式,我们可以看出,要求圆的面积必须先知道什么呢?
生:半径。
师:知道什么也可以求出圆的面积呢?
生:直径、周长。
师:下面我们就来试一试吧!
六、 巩固练习。
1. 平方的口算练习。
1 2 3 4 5 6 7 8 9 10 20 3022222222222 2
2.马的活动范围题:半径为2米,求周长。学生在练习本上完成。
3.圆形花坛的直径是20米,求圆形花坛的占地面积。
学生先汇报思路,再在练习本上完成。
4. 树干的周长是125.6米,求树干的横截面积是多少?
学生先汇报思路,再在练习本上完成。
七、 总结:
师:这节课你有什么收获?圆在我们的生活中,很常见,请看这是什么?课后你会自己用卡纸剪出这样一个风车,并计算出它的面积是多少吗?
圆的面积教学反思15《圆的面积》是学生学习求曲线图形面积第一课,是求图形面积的一次重要转折。探究圆的面积计算公式,“化曲为直”是最基本的思想,它需要学生用学过的方法来实现转化和推导。在教学本课时,我注意了这样几点:
1、密切联系学生的生活实际。剪纸是学生所熟悉的,借助这一操作,让学生初步地感知到圆和直线型图形之间的转化,所以在后面估计圆的面积大小时,学生就很自然地想到了两种估计的方法。其次,借助教材中生活场景,使学生理解了推导圆面积公式的必要性,激发了学生的求知欲望,调动了学生解决问题的积极性,使全体学生积极参与到数学学习活动中。
2、引导学生观察发现新旧知识的联系,理解发现“化曲为直”。当学生第一次面对求圆这种曲线图形的面积时,老师不是提供现成的转化方法,而是让学生去思考,为什么数圆的面积比数正方形的面积要难,究竟难在什么地方?有什么办法可以解决?这些问题需要学生主动去回顾圆的特征、主动探究学习方法。
3、充分发挥多媒体课件、及圆面积演示器的作用。在教学中,教师通过计算机演示很好地诠释了化曲为直中“无限接近“的极限思想;在推导圆的面积公式时,充分运用圆面积演示器,先展示四种转化的情况,然后分小组进行观察,比较转化前后图形间的联系,最后发现无论转化后的图形是长方形还是平行四边形,无论是否很接近长方形或平行四边形,最后推导出来的面积计算公式是一样的,也有力地说明圆的面积计算公式的正确性。
几何图形课的教学,就是要充分利用已有知识,学会迁移。要充分发挥直观教学的作用,帮助学生由感性向理性、由具体向抽象转化的思维过程。更要发挥现代化教学手段,使学生能在较短的时间内接触较多的信息,完成知识的建构。